Designed for trace-level oxygen analysis, the HALO OK offers:

- Industry-leading parts-per-trillion detection capability
- Unprecedented speed of response
- Wide dynamic range
- Absolute measurement (freedom from need for calibration gases)
- Low maintenance and cost of ownership
- Compact, portable package, ideal for both fixed and mobile cart installation
- Direct measurement in many matrices

Leading Choice for Ultra-high Purity Gas Users

Detect gas quality upsets before they damage your process. Using Tiger Optics' HALO OK oxygen analyzer, you can verify oxygen impurity levels with part-pertrillion accuracy, drift-free stability and instantaneous response. You'll find our system exceptionally easy and fast to install, and effortless to maintain, with built-in zero verification. Its robust design—free of moving parts—results in an analyzer that has a high Mean Time Between Failure (MTBF) rate and a very low Cost of Ownership (CoO).

With its patented catalytic conversion technique, utilizing a minute amount of hydrogen to cleanly and safely convert oxygen to moisture, the OK offers a fully laser-based solution for Continuous Quality Control of your process. Based on powerful Cavity Ring-down Spectroscopy, the HALO OK aligns with the SEMI F-112 standard for moisture dry-down characterization of gas systems. Pair the new HALO OK with our HALO KA for ppt-level moisture measurement to enjoy the many advantages of profit-boosting CRDS technology for both critical contaminants.

HALO OK

Trace-Level Oxygen Analyzer

Performance		
Operating range	See table below	
Detection limit (LDL, 3σ/24h)	See table below	
Precision (1σ , greater of)	± 0.75% or 1/3 of LDL	
Accuracy (greater of)	± 4% or LDL	
Speed of response	< 3 minutes to 95%	
Environmental conditions	10°C to 40°C	
	30% to 80% RH (non-condensing)	
Storage temperature	-10°C to 50°C	

Gas Handling System and Conditions			
Wetted materials	316L stainless steel		
	10 Ra surface finish		
Leak tested to	1 x 10 ⁻⁹ mbar l / sec		
Gas connections	1/4" male VCR		
Sample inlet pressure	10 – 125 psig (1.7 – 9.6 bara)		
Sample flow rate	0.5 to 1.8 slpm (gas dependent)		
Sample gases	Most inert matrices		
Gas temperature	Up to 60°C		
H ₂ supply requirements*,†	~15 sccm, 20 – 125 psig		

Dimensions	H x W x D [in (mm)]	
Standard sensor	8.73 x 19.0 x 23.6 (222 x 483 x 599)	
Weight		
Standard sensor	45 lbs (20.4 kg)	
Electrical		
Alarm indicators	2 user programmable	
	1 system fault	
	Form C relays	
Power requirements	100 – 240 VAC, 50/60 Hz	
Power consumption	450 Watts max.	
Signal output	Isolated 4–20 mA	
User interfaces	5.7" LCD touchscreen	
	10/100 Base-T Ethernet	
	802.11g Wireless (optional)	
	RS-232	
	Modbus TCP (optional)	
Certification	CE Mark	

Performance, O ₂ :	Range	LDL [‡] (3σ)	Precision (1σ) @ zero
In Helium	0 – 0.5 ppm	50 ppt	17 ppt
In Argon	0 – 1 ppm	90 ppt	30 ppt
In Hydrogen	0 – 2 ppm	150 ppt	50 ppt
In Nitrogen	0 – 2.5 ppm	200 ppt	70 ppt
In Carbon Dioxide§	0 – 5 ppm	5000 ppt	300 ppt

Contact us for additional analytes and matrices or information about our optional purged enclosure.

Tiger Optics, LLC

250 Titus Avenue, Suite B, Warrington, PA 18976 Phone: +1 (215) 656 4000 • Fax: +1 (215) 343 7168 sales@tigeroptics.com • www.tigeroptics.com

 $^{^{*}\}text{H}_{2}$ supply (maximum 10 ppm H_{2}O and O_{2} impurity) is required for sample conditioning via catalytic conversion.

 $^{^{\}dagger}$ For enhanced safety, a mixture of 3% $H_2/97\%$ N_2 can be used as an alternative to pure H_2 . This option requires a special configuration that must be specified at the time of order.

[‡]LDL is dependent upon the quality of the sample gas and the integrity of the sampling system.

[§]Special configuration required, must be specified at time of order.

U.S. Patent # 7,277,177 • U.S. Patent # 7,255,836